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Abstract—By ring potential theory, the double integral 

equations of axisymmetric Stokes equations can be converted 

into the single integral equations. The splitting extrapolation 

methods (SEMs) are applied to the boundary integral equations 

(BIEs) of axisymmetric Dirichlet’s problem governed by Stokes 

equations by the mechanical quadrature methods (MQMs). An 

asymptoic expansion with odd powers of error is presented, 

which posseses high accuracy order 3

max( )O h . Using 

3h -Richardson splitting extrapolation algorithms, the accuracy 

order of the approximation can be greatly improved, and an a 

posteriori error estimate can be obtained for constructing a 

self-adaptive parallel  algorithm. The efficiency of the parallel 

algorithm is illustrated by examples. 

 

Index Terms—Axisymmetric Stokes Problems, Splitting 

Extrapolation Methods, Boundary Integral Equations, Parallel 

Computation.  

I. INTRODUCTION 

Consider the Stokes interior problem: 
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and the Stokes exterior problem: 
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(1.1b) 

Where V is an axisymmetric bounded domain of space
3 . 

V is formed by rotating a two-dimensional bounded region 

  with the boundary 
1

d

mm
   , called a generatrix 

line of V , around z -axis. In (1.1), V is the surface of V , 

and V V V


  , and  
3 \cV V



 , and 

1 2 3( , , )n n n n  is the outward unit normal vector to V , 

and  1 2 3( , , )u u u u is a fluid velocity, and  

 
 

1 2 3( , , )p p p p is a pressure; and 

, / ( , 1,2,3)i j i ju u u i j    is the dynamic viscosity of the 

flow; and   is a constant, and the repeated subscripts imply 

the summation 1 to 3. If the rotation axis, i.e., z -axis, is 

include by V ,  then 
o    is open arcs, and if the rotation 

z -axis, is include by V ,  then c    is close arcs. In 

addition, we assume that mQ  is the corner points of the 

generatrix line . 

There exist many difficulties in problems of complicated 

geometries and infinite domains for solving (1.1) by the finite 

element method (FEM) and the finite difference method 

(FDM) [1], [3]-[5], [24], [27]. The finite volume method 

(FVM) too relies on discretizing space (into small volumes) 

and so has the obvious drawback for exterior creeping  flow 

problems. The boundary integral method is the method of 

choice when solving external problems and those involving 

complex regions [7], [10], [13], [14].  The dimension of the 

problem is reduced and integration along complicated curves 

can be accurately evaluated. 

Based on Ladyzhenskaya’s theory and the single-layer 

potential theory [9], [18], (1.1) can be converted into the 

following boundary integral equations (see, e.g., [9], [15], 

[16], [18], [23]-[26]) 
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(1.2a) 

Where 
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          (1.2b) 

are the fundamental solutions of (1.1); | |x y shows the 

Euclidean distance with 1 2 3( , , )y y y y ; and ki  is 

Kronecker sign. 

In [9], [18], it  has been  proved that  if  the boundary 

V is a Liapunov surface,  then the single-layer potential 

( )ku x is a continuous function in 
cV V V  ; and the 

dense functions 1 2 3( ( ), ( ), ( ))y y y    satisfy the 
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following BIEs of  the first kind 
3

0 1( ) ( , ) ( ) , , 1,2,3.k i ki i y
V

u x u x y y ds x V k




    (1.3a

) 

Based on [9], [18], [26], the solutions 

1 2 3( ( ), ( ), ( ))y y y    of (1.3a) are not unique, 

because n   all are the solutions of (1.3a). It is known 

that (1.3a) is solvable if and only if it satisfies the following 

compatibility condition [5] 

 
3

1( , ) ( ) 0.i i y
V

n y ds 


                             (1.3b) 

Once the single-layer dense functions are solved from (1.3a) 

and (1.3b), the fluid velocity u and pressure p can be 

obtained by  (1.2a). 

So far numerical methods for solving (1.3) are Galerkin 

and collocation methods [1], [2], [4], [5], [13], [17], [18], 

[24]. However, the discrete matrix is full and each element 

has to calculate the double weakly singular integral for 

collocation methods or the four-fold weak singular integral 

for Galerkin methods, which imply that CPU time expanded 

by calculating discrete matrix is so more as to exceed greatly 

to solve discrete equations, and the accuracy order of 

solutions is very low. Mechanical quadrature methods 

(MQMs) have been applied to solve the boundary integrals 

well (see, e.g., [8], [9]).  Obviously ,  we can construct MQMs 

for solving Stokes BIEs and prove that the methods are 

convergent by using some quadrature rules to deal with the 

singular integrals similar to [8], [9], then the calculation of 

the discrete matrix becomes very simple and the most of work 

can be saved. In this paper, first, by ring potential theory, the 

double integral equations of axisymmetric Stokes Dirichlet’s 

problems can be converted into the single integral equations. 

Secondly, by periodic transformations [22] to eliminate 

singularities of solutions and kernel integrals at 

discontinuous points, we propose high accuracy MQMs for 

solving BIEs (1.3) of axisymmetric Stokes Dirichlet’s 

problems by using quadrature rules [21]. Thirdly, based on 

multivariate asymptotic expansions of errors with odd power 
3( )( 1,..., )iO h i d , we establish the splitting extrapolation 

algorithms [8], [11], [28] with highly accuracy 

approximations and get a posterior error estimate as adaptive 

algorithms by solving discrete equations on some coarse 

mesh partitions in parallel. Finally, numerical results show 

further that the methods are very effective. 

II. QUADRATURE METHODS 

If  
3V  is an axisymmetric bounded domain, and is 

translating in the direction of  its symmetric axis, then the 

flow field is also axisymmetric, and  the single-layer 

potential dense functions 
1 2 3( ( ), ( ), ( ))y y y     is 

independent of the azimuthally angle in a cylindrical polar 

coordinate system ( , , )r z ,  that is, we have 

( cos , sin , ), [0,2 ],r r z                (2.1) 

Where 
r and 

z are the components of  in the radial 

r and axial z directions respectively. Without loss of 

generality, let the boundary have the parametric 

representation 

( ( )cos , ( )sin , ( )),0 1,0 2 ,x r t r t z t t       
 

and choosing x  to lie on the 0  plane results in the 

following from for 
0 0 0( ,0, )x r z  and  

( ( )cos , ( )sin , ( ))y r t r t z t  ,  we have 

 

2 2 2

0 0| | 4 (1 cos ( / 2)) /x y rr k k                    (2.2) 

with 2 2 2

0 0 04 /[( ) ( ) ]k rr r r z z    . For 0r  and 

0 0r  , by the three-dimensional fundamental solution of 

axisymmetric Stokes’ problem, substituting  (2.1) and (2.2) 

into (1.2b), we obtain 
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(2.3b) 
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(2.3c) 
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where ( )K k  and ( )E k are the complete elliptic integrals 

of the first kind and second kind respectively, and 
2 2 2

0 0( ) ( ) ,c r r z z   
2 2 2

0 0 0( ) ( ) .c r r z z     

Based on (1.3a) and (2.3), we obtain the following BIEs of 

axisymmetric Stokes’ equations: 
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 (2.4b) 

where ( , ) ( 1,..., ).q q qr z q d   The compatibility 

condition (1.3b) is reduced into 

 

1

( , ) 2 [ ( , ) ( , )

( , ) ( , ) 0.

m

d

m r m m r m m

m

z m m z m m

n r n r z r z

n r z r z d

  








  

            (2.4c) 

Assume that  the piece wise boundary can be described by 

the parameter  mapping 

 
1 2( ) ( ( ), ( )) [0,1]( ) :[0,1]m m m mx s x s x s C N      

 

with 
' 2 ' 2 ' 2

1 2| ( ) | | ( ) | | ( ) | 0m m mx s x s x s  
. 

 

     Since the solutions and the integral kernels at the corner 

points have the singularities, by Sidi’s  transformation [22] 

we take 

( ) ( ) :[0,1] [0,1], ,s s N                       (2.5) 
to eliminate the singularities from ( , )( , )i r z i r z 

  
and 

integral kernels at the corner points, where 

( ) ( ) / (1),     
0

( ) (sin ) .d




      

Define the boundary integral operators on 

[0,1]( 1,..., ) :m d
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                                                                                                                                                                              where  
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and the linear functional  
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(2.6) 

where  
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Using Lagrange multiplier method, we have the operaor 

equations 
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(2.7) 

 

where   is a Lagrange multiplier, 
' '( ) ( ( ( )) ( ) | ( ) |,m m

i i mx x          and 

'

0 0( ) ( ( ( ))) ( )( , ).q

i i qu t u x t i r z     Let ( , )qm

ijb t 


be 

the integral kernels of  integral operators 

( , , ).qm

ijB i j r z


 Since the kernels of operators qq

rrB


 and 

qq

zzB


have the logarithmic singularities, we have the 

following decomposition    
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If  the end of curve  

q  is not at the axis of symmetry, we 

have 
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where
00 ( , )qqa t   is the kernel of

00

qqA  . If  the end of curve is 

in the axis of symmetry, we have 
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Thus, the operator equations (2.7) become 
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00 00( , ),qq qq qqA diag A A
   

and  
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The kernels ( , )( , , )qm

ijb t i j r z  of operators 
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Since 1

00 : (0,1) (0,1)qq m mA H H   is a bitmapping 

operator 

[1], 2 1 2: ( (0,1)) ( (0,1))m d m dA H R H R  


also is a 

bitmapping operator. Hence, (2.10a) is converted into
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Where E  is the identity operator? Let 

{ ( 1/ 2) , 1,..., , 1/ , 1,..., }m m m mh n h n m d         

be the mesh point set. 

Since ( , )( , , )qm

ijb t i j r z   are the smooth functions on 

[0,1] for ,q m using the quadrature rules [6], we 

construct its nystrom approximation 
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ijB   
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(2.12a)                      

and the error 
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   have the logarithmic 

singularities on [0,1] for ,q m by the quadrature formula 

[21], we get the following approximations 00,
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hA of the 

integral operators 
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(2.13a) 
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(2.13b) 

 

where ( 1/ 2)q qt h   and 
'( )t is the derivative of 

Riemann zeta function, and 
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Hence, the approximations 
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of the integral operators 
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are defined by 
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Thus we obtain approximate equations of  (2.10), 
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   Once 
h is solved by (2.16), using the quadrature rule [6], 

we obtain 
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(2.17) 

 

Where 
2( ) ( ( ( ))cos , ( ( ))sin , ( )) \ .j j jy r r z t T          

III. SPLITTING EXTRAPOLATIONS 

Based on [8], [9], we can obtain the following important 

result. 

Let 
m be the smooth curves, 4

0 0 | ( ),
mi i mu u C   and 

5( ) [0,1], 1,..., , 1,2.mix t C m d i   then the approximate 

errors possess the following multivariate asymptotic 

expansions 
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3 3 3 3
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l m
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diag h h O h h h





 


 


      

                                                                                     

(3.1) 

 

Where 
1( ,..., )T

l       and [0,1]m C   is 

independent of mh . 

The multi-parameter asymptotic expansion (3.1) means 

that the SEMs can be applied to solve (1.3), that is, a higher 

order accuracy 3

0( )O h  at the coarse grid points can be 

obtained by solving some discrete equations in parallel. The 

process of the SEMs is as follows [7], [8], [11]. 

Step 1. Take (0)

1( ,..., )dh h h and 

( )

1( ,..., / 2,..., ).m

m dh h h h Then we can solve the problem (2.16) 

in parallel according to the mesh parameter
( )mh . Let 

m

( )h t  be their solutions. 

Step 2. Implement the following SEMs on the coarse grid 

points 
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we get a posteriori estimate of the error, which can be applied 

to construct some adaptive parallel algorithms. 
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IV. NUMERICAL RESULTS 

In this section, we study unbounded axisymmetric fluid 

flow past an array of rigid balls. Due to the great application 

in the sedimentation study, the problem of the unbounded 

axisymmetric fluid flow past an array of rigid balls has 

attracted much attention from researches. Assume the line of 

centers of the spheres coincides with z -axis. The radii R of 

the balls are not necessary same. Figure 1 presents a 

particular case, where the radii R of all balls is equal to a , 

the distance between the centers of two consecutive balls is 

2d . At present, several analytic methods have been 

presented for solving such this problem. For example, 

Happer and Brenner concluded the application of the method 

of reflection in [7] and obtained some analytic solutions for 

certain cases. The relative error is under 1% when / 3d a  . 

However, the relative error shoots up to 11% when / 1d a   

as two balls tangent to each other. In 1971, Glukman, Pfeffer 

and Weinbaum presented the multipole method [13], the 

relative error of which is within 2.5% for any value of 

/d a when same balls are evenly distributed. While, the 

application of such method to more complicated cases is not 

straightforward, for which the computational cost is too 

expensive. The method presented in this paper yields good 

numerical results. First, we consider a particular case in [13], 

the flow past two same balls with radii a in the direction of 

the negative z -axis direction with the uniform speedU , i.e., 

the fluid velocity is V U  , and the distance between the 

centers 2d . The resistances zF on the balls are same. We 

use the resistance factor 
8

ZF

U



   to test our method; 

the exact solution was given by Stimson and Jeffery [20], that 

is,  

2 2 2

1

1
4sinh ( ) (2 1) sinh

4 ( 1) 2sinh 1 .
3 (2 1)(2 3) 2sinh(2 1) (2 1)sinh 2n

n n
n n

n n n n

 
 

 





 
   

  
     

 


 

Fig. 2-5 shows the computational results using 

(2 ,2 )( 4,...,7)k k k   boundary nodes by 

transformation 3 . From Table 1 we can see ratio 8,  to 

agree with our theory, where 1n and 2n are the node numbers 

on the first and second balls respectively, and d


is 

equivalent to 1.0001, 1.01,  2 and 10 respectively. 

Secondly, we consider balls with different size. Suppose 

three stationary balls with centers at (0,0), (0,5) and (0,11) 

and radii  1 1,R   2 4R  and 3 2.R   The inflow velocity 

1.V    The numerical solutions of  resistances on three 

balls  1 2 3( , , )T

Z Z ZF F F F are listed in Table 2, which 

shows the numerical result has the precision of at least 4 

decimal places, although the exact solutions cannot obtain. 

At last, the flow field yielded by the motion of the array of 

rigid balls with different size 
1 2 3( , , )R R R and speed 

1 2 3( , , )v v v  in the unbounded flow (the inflow velocityV ) 

are plotted in Figure 6-8. 

 
Fig. 1. Multi-sphere 

 

Fig. 2. Errors of    by MQMs and SEMs ( 1.0001
d


 ) 

 

Fig. 3. Errors of    by MQMs and SEMs ( 1.01
d


 ) 

Fig. 4. Errors of    by MQMs and SEMs ( 2
d


 ) 
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Fig. 5. Errors of    by MQMs and SEMs ( 10
d


 ) 

 

Table 1. Errors of ratio for MQMs 

 

Table 2. Numerical Solutions of Resistances on Three Balls 

 

1 2 3( , , )n n n n

 
1 2 3( , , )T

z z z zF F F F

 

3h SEMs  

 

(16,16,16) 
8.835199053

60.003418899

22.494547512

 
 
 
 
 
 

 

 

(32,32,32) 
8.836047974

60.010437194

22.496613832

 
 
 
 
 
 

8.836169249

60.011439807

22.496909021

 
 
 
 
 
 

(64,64,64) 8.836154779

60.011319218

22.496874821

 
 
 
 
 
 

8.836170037

60.011445221

22.496912105

 
 
 
 
 
 

 

(128,128,128) 
8.836168125

60.011429526

22.496907470

 
 
 
 
 
 

8.836170031

60.011445285

22.496912135

 
 
 
 
 
 

  

 

 
Fig. 6. Streamline 1, 

1 2 3 1 2 30, 2, 1, 3V v v v R R R        

 
Fig. 7. Streamline 2, 

1 2 3 1 2 33, 2, 1, 3V v v v R R R         

 
Fig. 8. Streamline 3, 

1 2 3 1 2 30, 2, 2, 1, 3, 4, 3V v v v R R R        

 

V. CONCLUSION 

The following conclusions can be drawn concerning the 

mechanical quadrature method: 

(a) Computing entry of discrete matrices is simple and 

straightforward, without any singular integrals. The 

mechanical quadrature method involves a high accuracy 

1 2( , )n n n

 

1.0001ratio

 

1.01ratio

 

2ratio

 

10ratio

 

(16,16) - - - - 

(32,32) 7.915 8.429 7.947 7.980 

(64,64) 8.001 8.648 7.995 8.001 

(128,128) 8.087 8.111 7.999 8.000 
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algorithm with convergent rate 3( )( 1,..., )iO h i d . 

(b) The larger the scales of the problem, the more precise 

are the results that can be obtained according to the 

numerical results. The extrapolation algorithm is not very 

complex, but it is very effective. 
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